

FileMaker Solution
Architectures

Data Modeling, File Architectures and
the Relationships Graph

 FileMaker Solution Architectures Page 2 of 39

Table of Contents
About This Technical Brief ... 3
Gathering Requirements………………………...…………….……………………..4
Clarifying Terms .. 4
Establishing a Model .. 4
Validating a Model………………………………………….………………………….8
File Architectures .. 16
The Single File Solution .. 17
The Multi File Solution……………………………………………………………….18
Data Separation and "The Separation Model" ... 18
Data Segmentation ... 21
Horizontal Segmentation ... 22
Vertical Segmentation .. 22
Multiple Interface Files ... 23
Satellite Files ... 24
Utility Files ... 24
The Relationships Graph ... 26
Approaches to Graph Modeling .. 27
Model 1 - The Amorphous / Chaotic Model ... 27
Model 2 - The Squid / Anchor-Buoy Model .. 28
Model 3 - The Modular / Centric Model .. 29
Model 4 - The Flotilla or Satellite Model ... 32
Model 5 - The Procedural Control Model ... 34
Model 6 - The Hybrid Model .. 36
Beyond Ancient Wisdom .. 38
About The Author .. 39

 FileMaker Solution Architectures Page 3 of 39

About This Technical Brief
The purpose of this brief is to provide a guide to the many options available to
you as you design and develop custom business solutions in FileMaker Pro –
from initial requirements, to data modeling techniques, to architectural options.

The information provided in this technical brief will be useful to intermediate and
advanced FileMaker developers who have some grounding in database theory
and who are already familiar with basic concepts and programming techniques
in FileMaker Pro.

Gathering requirements
The first step in developing a useful data model is to take time to understand
your audience and their requirements.

Even if the solution you’re about to create is relatively simple and may only be
intended for your own use, a useful first step is listing the needs it should
address and functions it should perform.

First, identify the groups, teams, titles, and/or names of the individuals that will
be using your solution.

Next, set up meetings with these individuals to discuss their needs. When
speaking with the different teams and groups that will use the solution, you will
most likely notice that they may have different requirements of the solution. Be
sure to ask which tasks are most important to each group.

Ask questions like these as a guide to gather your requirements:

• What are the primary tasks that the solution should accomplish?
• What needs must it address and what functions must it perform?
• How many users will the new solution need to serve?
• What tasks must be accomplished quickly?
• Are there tasks that need to be done in a specific order?
• Is the new solution replacing an existing one? If so, why? What do you

like or dislike about the existing solution? Are there specific limitations
that you want the new solution to address?

Arising from an initial review of requirements, your notes should include
statements from users like the ones below:

• At the start of each academic year, we need to more easily track, which
students have enrolled in which courses at which campuses.

 FileMaker Solution Architectures Page 4 of 39

• We need to better track which salespeople are placing orders for which
clients for what products from our inventory. Plus be able to know at what
warehouse each inventory item is stored.

• We need to track what cars are delivered to which wrecking yard on a

daily basis and what parts are removed for sale. For each car part
available for sale, we need to know the name, make, model, color, year,
and other specifications.

Clarifying Terms

The nouns and verbs used in these sentences are very important in helping you
create a data model that will meet your users’ needs:

Nouns - many of the nouns used will correspond to a tangible entity that will
need to be tracked in your solution. Other nouns will refer to attributes of the
entities, which we’ll identify in the next section.

Verbs – verbs can be used to describe relationships and processes that will
need to be created in your solution.

Establishing a data model
The data model you create affects the stability, scalability, and maintainability of
the database you create. Think of it as the foundation of a house; if the
foundation is solid then so is the house, but if the foundation is fragile then it’s a
potential house of cards.

There are three major building blocks you’ll use to assemble your data model:

1. Entities - An entity is representation of a real world object within your
database. Entities are generally considered to be whole and indivisible,
like a person for instance, but strictness of entity definitions will vary
according to application. For example, in the context of an automobile
sales database a vehicle can be considered an entity and treated as an
“indivisible whole.” Within the context of a wrecking yard or a spare parts
database, the individual parts of the vehicle would be considered the
entities.

2. Attributes - An attribute is a descriptor or fact about an entity that can be
expected to exist for all members of the particular entity group. For
example, a vehicle entity might have attributes like Make, Model, and List
Price.

3. Relationships - A relationship is the existence of an association between
two or more entities. For example, a vehicle entity may have a related

 FileMaker Solution Architectures Page 5 of 39

engine entity, or perhaps several different related engine entities
depending upon the vehicle’s customization options.

The order listed above is the typical order in which you will address the data
model: first entities, next attributes, and finally relationships.

Finding entities	
The first step towards establishing a viable data model is to draw up a list of
entities that will be included in the database. You can do this on paper or with a
variety of software programs.

The notes that you took during your requirements gathering should be used as
the source for the initial data model. Remember that the nouns will most likely
relate to entities that should appear in the data model.

A statement in your notes may go something like this:
At the start of each academic year, we need to more easily track, which students
have enrolled in which courses at which campuses.

The statement suggests that the solution you create will require you to store
data for entities such as:

• Academic Year
• Student
• Course
• Campus

Similarly, a comment by a user to the effect that:
We need to better track which salespeople are placing orders for which clients
for what products from our inventory.

The statement suggests that the solution you create will require you to store
data for entities such as:

• Salesperson
• Client Contact
• Client
• Order
• Order Items
• Product
• Inventory

In each of the above examples, the information yielded from a single sentence of
user input gives only a small and very likely incomplete picture. You will need to

 FileMaker Solution Architectures Page 6 of 39

parse a range of requirements, drawing on each to obtain a “rounded picture” of
the entities in play.

Bear in mind that many nouns will be synonyms for other nouns (or sub-classes
of the same category of entity), so terms such as “prospect,” “client,”
“customer,” “buyer,” and “patron” may all be adequately represented by the
inclusion of the “Client” entity in your list – or alternatively, represented within a
more generalized “Person” entity.

Frequently, you will find that your starting list of candidate entities grows
quickly, but it can be consolidated and reduced as you confirm that a number of
references using different terms actually refer to the same entity.

Some nouns, rather than being a synonym for an entity you have already
documented, will instead refer to an attribute of an existing entity. Some careful
listening and follow-up questioning may be required to make appropriate
determinations about distinctions between terms with related meanings, and
terms which may refer to an attribute of an entity rather than an entirely new
entity.

Listing the attributes for each entity	
Once you have the entities mapped out, you’re ready to expand and further
support the model by assigning attributes to each entity. Developing an
attributes list will provide the level of detail that will greatly increase the
usefulness and intelligibility of the model during the design and development
stages that follow.

Attributes are very important for building relationships between entities; each
entity must have at leave one key attribute whose value will uniquely define each
instance of the entity. This attribute is called the primary key. Primary keys
must be unique to each instance of an entity and must also be unchangeable in
order to preserve the relational integrity of your data.

In the case of a vehicle, using a value like a registration or license number would
not suffice since the value would change soon after the vehicle is purchased
from the dealer, and any relationship built upon that attribute could break. The
VIN Number may be the value that is singularly unique enough to be used as the
primary key, but depending upon the age of the car, a VIN Number might not be
issued. Therefore the cardinal rule for key attributes is to avoid using real data
for primary keys, because real data changes. It’s best to create a primary key
attribute that does not contain real data and that the developer can guarantee is
unique and unchanging.

 FileMaker Solution Architectures Page 7 of 39

After adding the Primary key, start going through the leftover nouns from your
requirements that aren’t entities. Decide whether each noun describes one of
your entities. Next go through each entity and list other descriptors. You can
create a list similar to the one below showing all of the known attributes and
what type of data will be stored in each field.

Figure 1: Warehouse Entity Attributes with Data Types

Note that in the process of listing entity attributes you may find that what you
thought were mere attributes of the current entity actually represent another
entity within the data model. In Figure 1 for instance, you may realize that the
Manager Name attribute already exists as the Name attribute of the Person
entity, and the several address related attributes are shared with the Location
entity. In this case you can change the Manager Name attribute into a key
attribute that stores the primary key for the Person entity. Likewise, you can
remove all of the address and phone number fields from the Warehouse entity
and instead add Location foreign key attribute. This is an important process and
you’ll learn more about it in “Defining data normalization requirements” below.

Defining Relationships
Whereas nouns typically refer to an entity, verbs commonly refer to
relationships. There are three different types of relationships that you should
know about when it comes to establishing a data model for your solution:

1. One-to-One
2. One-to-Many
3. Many-to-Many

IMPORTANT: The mechanism that lets us build relationships between entities is
key attributes. Every entity should have at least one unique key called the

 FileMaker Solution Architectures Page 8 of 39

primary key. Relationships are established by storing the primary key of one
entity in a special attribute called the foreign key of another entity.

One-to-One Relationship – Use a one-to-one relationship to join two entities
where each instance of both entities relate to only one instance of the other
entity. For example, each student can only have one locker, and each locker
only belongs to one student. Therefore, you will create a one-to-one relationship
in your data model where each Student entity relates to only one unique Locker
entity.

One-to-Many Relationship – Use a one-to-many relationship to join one entity
to many instances of another entity. For example, one school can have many
classrooms, but a classroom can only be in one school. Therefore, you will
create a one-to-many relationship in your data model where each School entity
relates to many classrooms.

Many-to-Many Relationships – Use many-to-many relationships to join many
instances of one entity to many instances of another entity. For example, a
student may enroll in many courses, and a course may be attended by many
students. Therefore, you will create a many-to-many relationship in your data
model where many course entities relate to many students.

In most cases with one-to-many relationships, the entity on the many side will
contain an attribute that is the one side entity. For example an Invoice entity has
an attribute of the Client the invoice was sent to, but a Client is an entity itself.
This relationship is easily created by changing that attribute into a foreign key
that will store the primary key of the instance it relates to.

Unfortunately this isn’t the case with many-to-many relationships. For example,
using the Student and Course example above, if the Student primary key is
stored in the Course foreign key and vice versa, how will we ever get more than
one Student in a Course, or allow a Student to attend more than one Course?
Many-to-many demands the creation of a new type of entity, known an
associative entity, for the sole purpose of joining multiple instances of two
entities. The associative entity is derived from the relationship between the two
main entities, so in this case it might be called Enrollment. The Enrollment entity
forms the connection between the Student and the Course, and may be contain
its own range of attributes (year of study, chosen classes, mode of study, and
so on) that are particular to the Enrollment, rather than being attributes of either
the Student or the Course. In this scenario, the Enrollment entity contains
foreign key attributes for both Student and Course. This in essence turns the
many-to-many relationship into two one-to-many relationships. A Student can
have many Enrollments, a Class can also have many Enrollments, but each
Enrollment belongs to only one Student and one Class.

 FileMaker Solution Architectures Page 9 of 39

In each sentence of your notes, you should now consider the verbs, to
determine whether they describe the type of connection between nouns in the
subject or predicate of the sentence, to business rules that will impact the
solution logic, or both.

As your assembly of key entities, relationships and process descriptors nears
completion, you will be able to begin grouping the entities according to their
functional, logical or relational connections.

Whenever two nouns that relate to entities appear in the same sentence, you
can expect that the corresponding entities should be grouped together. The
nouns that appear together most frequently should be grouped most closely.

As the information acquired through the processes outlined above begins to
take form, it will provide you with a preliminary view of the nature, scale, and
scope of the data model for the solution.

At this point, you may find it helpful to begin mapping the high-level data
requirements (entities and relationships) in the form of an entity relationship
diagram, as described in the next section.

Creating an Entity Relationship Diagram (ERD)
An ERD captures a high-level view of the proposed data model for a solution by
providing a graphical representation of both the entities and the relationships
between entities.

The value of an ERD from the perspective of FileMaker development is its ability
to provide a simplified map of the main elements of the data model.

With regard to a FileMaker solution, it may be appropriate for the ERD to include
representations of data that is to be stored outside the solution (i.e. External
SQL Sources that will be accessed, web data, mobile device data, etc.) that will
nevertheless have a role in the solution.

An effective ERD is generally comprised of three main components:

1. The entities that will be represented by data tables in the solution
2. The principal data relationships between tables
3. The type of each relationship

Each entity and its corresponding table are usually represented in an ERD by a
single rectangle, which is labeled with a singular noun.

 FileMaker Solution Architectures Page 10 of 39

Primary relationships between entities are represented by lines connecting the
rectangles and typically labeled with verbs.

An example of one form an ERD may take is provided as Figure 1, below. Note
that in the sample diagram in Figure 2, lines, crow’s feet and circles have been
used to indicate different relationship cardinality.

Also included as part of the example ERD in Figure 2 are verbs that characterize
the relationships between each of the entities. While these are optional, their
presence helps to clarify the nature of the connection or interaction between
each of the entities in the diagram.

Figure 2: Sample Entity Relationship Diagram

Figure 3: Legend of Cardinality Symbols

Figure 3 provides a legend for the cardinality symbols used in Figure 1. There
are numerous alternative cardinality symbol systems in current use. You should
choose a system that is familiar to you or others who may view your diagrams
(and/or one that is supported by a readily available software) and apply it
consistently.

SALESPERSON CUSTOMER ORDER

PRODUCTWAREHOUSE

Serves > Places >

Lists v

Supplies >

ORDER ITEM

< Specifies

 FileMaker Solution Architectures Page 11 of 39

Validating the data model
Once you have made substantial progress toward capturing and grouping the
high level entities and relations for a solution and have mapped them to an ERD,
there are two further processes you should consider undertaking to validate the
data model, as described below.

• Defining data normalization requirements
• Outlining data flow and solution logic
• Delineating interface requirements

This is also the stage where you begin thinking about the real work of
implementing your data model in an actual database. You'll consider the
implications of transforming the theoretical data model into functional tables and
join tables (entity types and associative entities), each table containing a
collection of records (instances of entities), made up of fields containing data
(attributes).

Defining data normalization requirements
The next stage in developing your data model is known as data normalization.
It is the most important and widely accepted principle of good data design.

Data Normalization can be characterized as the elimination of redundant and
duplicate data that is commonly found in large tables, by distributing the data
among several smaller tables and establishing relationships between them.

By using this process, information that may previously have appeared in multiple
places is consolidated in order to avoid problems with managing redundant and
duplicated data.

The rules of normalization are referred to as normal forms as follows:

1NF: A table is said to be in First Normal Form when:

• There are no repetitions of groups of data within a table.
• All relevant attributes associated with a unique entity are defined.
• All attributes in a table are uniquely associated with the primary key.

2NF: A table is said to be in Second Normal Form when:

• It is in First Normal Form.
• Each column is dependent upon the entire primary key.

3NF: A table is said to be in Third Normal Form when:

 FileMaker Solution Architectures Page 12 of 39

• It is in Second Normal Form.
• It contains no transitive dependencies (where a non-key attribute is

dependent on another non-key attribute).

For the purposes of these definitions, the term “key” refers to a unique and
definitive value that is used to identify and reference individual records within a
table.

A primary key field (also known as a column or attribute) is the unique defining
value for records (also known as rows, or instances of entities) in a table. Other
keys (frequently referred to as foreign keys) are stored as secondary attributes
that serve to form relationships between the record and specific records in other
tables.

According to the definitions provided above, first normal form sets the most
basic rules for data organization - it requires the:

• Elimination of duplicate sets of fields within a given table.
• Creation of separate entities/tables for each group of related data.
• Identification of a field/attribute that identifies each record with a unique

value (or set of values) to serve as the primary key.

By extension, 1NF can be characterized as calling for the elimination of
repeating groups of data through the creation of separate tables of related data.
For example, take a simple Contact table with the following fields:

Contact ID:
Name:
Company Name:
Company Website:
Address
City:
State:
Postal Code:
Email:
Work Phone:
Home Phone:

The last two fields of this table are the contact’s work and home phone
numbers. Even though the data stored within these fields will be different for
each contact, the type of data in both of these fields it the same, phone
numbers. 1NF would require that another table for phone numbers be created,
giving us the following tables:

 FileMaker Solution Architectures Page 13 of 39

Contacts
Contact ID:
Name:
Company Name:
Company Website:
Address:
City:
State:
Postal Code:
Email:

Phone Numbers
Phone Number ID:
Contact ID:
Phone Number:
Type:

This turns one table into a One-to-many relationship between two tables based
on the Contact ID field. Breaking this into two tables also gives the application
easy scalability. In the previous example, a new field would need to be added if
requirements change and a Cell or Fax number suddenly needs to be tracked.
By turning this into a One-to-many relationship, contacts can have as many
phone numbers, as they like without extra programming.

The additional constraint specified by 2NF can be explained as being a
requirement that every field within a table stores an attribute that is inseparably
part of the entity to which the table refers. For example, in the Contact table
above, there are Company Name and Company Website fields.

This example breaks normal form because while the Name and Email fields are
particular to the whole of the Contact ID primary key, the Company Name and
Company Website relate to the company alone. To satisfy 2NF, the data must
be broken into two records in separate tables, as follows:

Contact ID:
Company ID:
Name:
Address:
City:
State:
Postal Code:
Email:

And in a separate table:

 FileMaker Solution Architectures Page 14 of 39

Company ID:
Company Name:
Company Website:

...with a relationship between the tables (matching the Company ID field in each)
being used to associate the relevant Company Name and Company Website
with the contact record. This has the advantage of ensuring that the company
name and website need only be entered once in the company table, yet can be
referenced from multiple contact records.

Similarly, 3NF deals with a further area of potential redundancy, requiring that
attributes that aren’t associated wholly with the primary key (i.e. are associated
with a non-key value) be removed to a separate table. For example, in a data set
where all postal codes are specific to a state, the state attribute can be dictated
by and dependent upon the postal code. Therefore, to satisfy 3NF, state names
should be moved to a separate reference table.

Thinking in the different forms while planning can take time to learn, but will
benefit your solution when followed properly. 1NF and 2NF are easier to learn
and should be considered for most solutions. 3NF is more difficult to follow
strictly and in certain cases can get in the way of programming ease and
usability. In the postal code and state example above, the benefit in not storing
repeated data (state) for every address is likely to be tiny for most FileMaker-
scale systems when compared to the extra work required to build and maintain a
table of states keyed to postal codes. This will be especially true for systems
where addresses are likely to come from a small geographic area - the additional
storage required for the entire postal code reference table may be larger than the
entire rest of the system.

Outlining data flow and solution logic
The next step in the process of validating your data model is to outline the data
flow and solution logic. The inputs and outputs to and from each entity or group
of entities collectively define the system data flow. If there are aspects of the
functional requirements that are not associated with relevant inputs and outputs
that map directly to the data model, then you have a problem to address.

The most frequent flaw that preparation of a data flow chart, such as the
example shown at Figure 4, will expose in a first draft data model is that of a
missing component. There may be insufficient provision to track the
connections between the known entities. Such an omission may take the form
of data required to support the solution logic which is assumed as a given by
users (e.g. that they would not routinely expect to collect and enter as part of
normal data entry operations).

 FileMaker Solution Architectures Page 15 of 39

Among others, such omissions may include data in reference tables – such as a
list of states and zip codes - and historical data such as past product pricing
levels. In this context, reference tables are those for which the data originates
outside the system and may be static or expected to change infrequently.
Examples of reference data are state and country codes, tax rates or molecular
weights.

Figure 4: Example Data Flow Chart

When you have mapped the inputs and outputs from end to end, taking into
account all known functional requirements, and can point to where in the data
model each input and output will go, you will have reached a further milestone.

At this point, you will be significantly closer to achieving the desired level of
confidence that your data model is ready to provide a basis for development.

Delineating Interface Requirements
A final check of the viability of your data model is your confirmation that its
interface requirements will be met. The system interface may include specific
requirements to interact with other systems such as QuickBooks or an SQL data
source, or specific requirements for the screen size so it runs on iPhone or iPad,
or specific requirements for printed output, such as sales reports, packing slips
or shipping labels.

The first and simplest part of the interface requirements validation is to check off
that all data elements mentioned in requirements and user notes, shown in
screen mock-ups, and that appear in the screens of earlier systems your
solution will replace exist in your lists of key attributes per entity. If this first
check exposes any omissions, you can now extend or adjust the data model if
required to ensure completeness.

A further component of the interface requirements check is to confirm that the
data model will support the necessary relationships and relational queries to

 FileMaker Solution Architectures Page 16 of 39

bring together the various combinations of data that will be required for display
within the interface. At this point, your concern is to ensure that all required joins
and associative entities are supported and included in the data model.

It’s worth noting that your data model need not, and ideally should not, attempt
to document every relationship or logical path that will be established in your
solution during development.

Only the primary data relationships between each entity need be included for
the purposes of the model. What is necessary, however, is that all the entities
and attributes that will be required to support secondary and ancillary
connections and data flows are present and accounted for in the data
architecture you have devised.

Congratulations! At this point, your data model should be validated, and you’re
ready to move onto the file architecture of your solution.

 FileMaker Solution Architectures Page 17 of 39

File Architectures
As part of the design process you should determine whether the solution will be
within a single file or whether its components will reside in multiple files and, if
so, in what configuration.

The single file solution
The most common FileMaker database architecture is one that places all the
components of a solution into a single file. For some users and developers, the
single-file solution architecture has become the default position, and for others it
is the only approach considered.

There are some notable advantages that arise from the adoption of a single file
model for a solution’s file architecture. These include:

• File portability and manageability
• Simplicity of development and maintenance
• Predictability and usability
• Inherent structural integrity
• Performance considerations
• Transparent and unified version control
• Improved interoperability and functionality within FileMaker

The first of the potential advantages listed above is perhaps the most
immediately obvious – a single file solution has fewer components than a multi-
file solution, with only one component to move around, no additional parts to
lose track of and only the file’s internal structure to think about. Whether you are
deploying to an end-user’s desktop, loading the file on an iOS device to take it
on a field trip, or publishing the file via FileMaker Server, it can’t get much
simpler.

A single file solution architecture also provides simplicity of development and
maintenance insofar as there is no need to constantly think about which
elements will be required in which files, nor to ensure that data is passed
between files appropriately – it’s all just there. Perhaps most significantly, in a
single file solution, there is no need to replicate and maintain security settings
(accounts or privilege set configurations) in multiple files – it all just works.

Just as single file architecture simplifies various aspects of development, it also
has similar advantages for the end user. Fewer “moving parts” means fewer
things can go wrong.

It makes sense to consider the use of single-file architectures for many
solutions. However there are a number of situations that may call for the use of

 FileMaker Solution Architectures Page 18 of 39

multiple files, and some situations where you may deem that there are
advantages arising from the use of multiple files that will outweigh these
considerations.

The multi-file solution
Let’s take a look at several of the deployment scenarios where multi-file
solutions are common. Each is explained below:

o Data Separation
o Data Segmentation
o Horizontal Segmentation
o Vertical Segmentation
o Multiple Interface Files
o Satellite Files
o Utility Files

Data Separation and “The Separation Model”
The concept of data separation, or “The Separation Model” as it is known by
some proponents, is centered around a file architecture in which the tables
holding the data reside in one file, while the user interface and the code that
supports it (including the majority of scripts) reside in a separate file. While a
basic data separation solution architecture comprises two files, there are some
cases where additional files may come into play, either for the data or the
interface. By way of illustration, some of the alternative models for file
architecture are depicted in diagrammatic form in Figure 5, Figure 6 and Figure
7 below.

Figure 5: Diagrammatic representation of a Single-File Solution
Architecture

 FileMaker Solution Architectures Page 19 of 39

Figure 6: Diagrammatic representation of a simple
Data Separation Solution Architecture

Figure 7: Diagrammatic representation of one possible example
of a compound Data Separation Solution Architecture

Potential benefits may result from the use of a data separation file architecture.
The most widely cited is the ability to issue solution updates to users efficiently
and quickly by swapping out the interface file while leaving the data (residing in
the separate data file) in place. For solutions which require frequent
modifications to the interface (layouts, scripts, and so on), this can prove
convenient. In many cases, however, changes required in a solution will touch
some aspect of schema or related settings, requiring that the data file also be
updated – and the practical advantage in the use of data separation will be
diminished.

A rather different rationale for data separation file architecture is one that is
based on a network topology where the data file will reside on a server with a
separate instance of the interface file being deployed to each end-user’s
workstation. One of the significant benefits that this deployment method can
offer is improved performance, since only the data must be retrieved from and
transmitted to the server over the network, with interface graphics, code, and
resources (some of which may otherwise be bandwidth intensive) being local to
each user. This approach may have merit in any situation where network
bandwidth will be limited for some (or all) users, and is especially applicable to
solution deployment over WAN and/or to users of iOS devices running FileMaker
Go.

 FileMaker Solution Architectures Page 20 of 39

A further benefit that may flow from the use of this distributed interface
approach is the potential to provide different users or groups of users with
different interface files particular to their requirements. However, equivalent
functionally can also be achieved by offering multiple interface files located on
the server or by building multiple discreet interfaces into a single file, so this
option is not exclusive to the distributed interface solution topology outlined
here.

A range of other distinct rationales for full or partial data separation arise from a
variety of solution-specific requirements such as the need to make use of data
sources that reside outside of FileMaker Pro. For example, solutions that will use
the ability to connect to External SQL Data Sources (ESS) in FileMaker Pro must
necessarily have at least some tables of data (i.e. the SQL data) residing outside
the FileMaker file that provides the user interface.

These and other potential benefits of data separation should be considered on
their merits with regard to the patterns of usage, change management scenarios
and other requirements for each individual solution. However, given that the
advantages are offset by some notable disadvantages, some deliberation is in
order. The downsides of data separation solution architecture primarily consist
of forfeiture of the various forms of simplicity and improved interoperability that
a single file solution architecture may offer, as outlined in the preceding pages.

Although not widely understood, one of the issues that arises from the use of
data separation file architectures is that FileMaker functionality is affected when
schema and interface reside in different files. Principally, this has to do with
management of cached data in FileMaker Pro and the ways it contributes to a
seamless user experience. Related records created but not yet committed will
not be “seen” via relationships calculations outside the scope of the file or table
occurrence group (TOG) the user is acting upon until the data is committed. For
example, a calculation in the current table that sums a number field in a related
record will update to include the values entered on new (uncommitted) related
records in a single file solution, a commit will be required before the calculation
will update in an otherwise equivalent situation where the data and interface are
based on separate TOGs, as they are (of necessity) in a data separation
scenario. A similar issue will arise in a single-file solution where the context for
calculations in schema differs from the context of the layout from which
changes are made. Dealing with this and other comparable functional limitations
adds complexity to a separation solution while reducing the inherent
transactional integrity options that are otherwise available in a single file
solution.

A further consideration in making choices about data separation is the
implications for and impacts on the configuration and management of solution

 FileMaker Solution Architectures Page 21 of 39

security. In particular, consideration must be given to synchronization of the
account and privilege set configurations in each file, while also providing a
sufficiently seamless user experience. For example, it would be desirable that
when users logs into an account in an interface file, they’re not separately
required to log in in the data file(s). It is nevertheless desirable that the same
login credentials be invoked simultaneously in both files to support granular
security constraints, the collection of record creation and modification data and
various other operational requirements. This may require additional code or
infrastructure in a multi-file solution to provide for automated transmission of
user credentials between files. In cases where internally authenticated accounts
will be present and where users are permitted to choose or change their own
password, similar issues will arise with regard to the synchronization of
passwords between the files of a solution, as well as new versions of files that
are to be deployed which may not be configured with users’ current passwords.

The ability to structure a solution around a data separation file architecture adds
useful and relevant options both for development and for deployment in a
variety of scenarios. For solutions where the benefits it provides clearly outweigh
the costs, data separation can provide a viable and valuable solution framework.
It is not, however appropriate to all cases, and it carries several potential costs
that may offset the advantages it is able to provide. After weighing the relative
merits of potential models in relation to the needs of a given solution, you will be
able to make an informed choice regarding the file architecture.

Data Segmentation
There are a number of situations where you may find it desirable to distribute
solution data between multiple files.

You might consider placing data in multiple files where the solution falls naturally
into modules, such that many users will require access to only one part of the
solution, but not to others, and few users will access the whole of the solution.
In such cases, there may be logistic and/or performance benefits to creating a
clean delineation between modules and placing different modules in their own
relatively self-contained data files. This may result in usage profiles in which a
minority of users have the whole solution open at any given time, reducing the
burden on server, network, memory and CPU throughout, while improving
performance.

Among the potential logistic benefits of a modular file architecture is the ability
to decommission and update one part of the system without substantially
impacting others, and to set backup schedules for the modules on a staggered
timetable so that any perceptible pause during server backups is kept to a
minimum.

 FileMaker Solution Architectures Page 22 of 39

The decision to build a solution around a modular data architecture may be
made independent of considerations regarding the interface. That is, the
interface may be modularized also, and may reside within individual files (so
each file contains the bulk of both interface and data relating to a given module),
may be gathered into a separate interface-only file to form a data separation
configuration, or may be consolidated into one or more of the files containing
module data.

Horizontal Segmentation
While modularization of a solution within the file architecture is one form of
segmentation that is sometimes referred to as horizontal segmentation, other
forms of horizontal segmentation are also achievable in FileMaker and may be
worth considering in some cases.

In a solution that combines image or media content in one or a few container
fields, along with large amounts of text or numeric (including time, date and
timestamp) data, the file size of the solution may be impacted by the storage of
container content. One answer to this is to store container data externally, an
option that was introduced with FileMaker 12, thus reducing the size of the main
data file and improving its manageability (including backup times and so on).
Another option is to place the container fields in a new table (related to the
original data table via a 1:1 join) and place that table in a separate file. The
backup schedules of the files can then be specified separately, keeping users
from having delays during peak times if you’re backing up large quantities of
media content.

It’s also a good method when you’re not accessing the large volumes of data
often, but it’s there when you need it.

Vertical Segmentation
A further application of file architectures that employ segmentation is what is
sometimes called vertical segmentation. Whereas horizontal segmentation
typically involves the distribution of data that might otherwise reside in a single
record, vertical segmentation involves providing separate storage for some
records in a table or some tables in the data model.

Typical uses of vertical segmentation in a FileMaker solution would include use
of a separate archive table for older records (i.e. previous decade or century,
previous fiscal years, etc.) or for records identified as lower-use (infrequent
customers, rarely encountered molecular formations and so on). Most
commonly, the purpose is to avoid burdening the moment-to-moment operation
of the solution with large volumes of data that is needed occasionally. Perhaps
the most frequent application of this form of data segmentation is where
transaction logs are archived such that only the logs for the current period (day,

 FileMaker Solution Architectures Page 23 of 39

week or month) are retained in the main solution file, while historical log data is
pushed out to a separate file that is accessed sporadically.

Similarly, large reference tables that are either low-use or static in nature (postal
codes, the periodic table, etc.) may be candidates for segmentation. Although
these tables may be necessary to the operation of the solution, they don’t form
part of the dynamic or critical data at the core of the business.

As with other forms of data segmentation, vertical segmentation is often
considered appropriate for high volume data that rarely or never changes
(historical reference), the reasoning in part being that data that doesn’t change
does not need frequent backups and the resources that would require.

Multiple Interface Files
Just as some solutions may benefit from a multi-file architecture where the data
resides in multiple files, there are also circumstances where it may be of benefit
to separate the solution interface into multiple files.

One scenario mentioned previously is where a modular solution may be
designed to contain the interface for each component within the file where most
or all of the data for that module resides. In this scenario, it is sometimes useful
to provide a single point of entry for users to log into the solution, where they
will be presented with a top level menu offering a choice of the available
modules. In other cases, users may only ever have needed to use a single
module, and may be able to complete their work in ignorance of the existence of
other modules.

An alternate scenario that may benefit from the creation of multiple interface
files is where different classes of user, while needing access to the same data,
have very different functional requirements. Rather than produce a hybrid
interface in which the different groups of users are presented with options they
don’t need and screens filled with content arranged in ways that are unsuitable
for their needs, an elegant alternative is the creation of two separate interfaces,
each optimized to the needs of a particular set of users.

A further example of the use of multiple interface files is a solution that requires
extensive data entry and transactional screens for day-to-day business of an
organization, plus a separate interface module that supports reporting, statistical
analysis and management information.

It’s worth noting that the various file architectural options discussed here can
co-exist within the same solution in a variety of combinations according to need.
It falls to you as the designer and developer to devise a file architecture that
matches the needs of your solution’s users and delivers the required functions in
a robust and efficient manner.

 FileMaker Solution Architectures Page 24 of 39

Satellite Files
In addition to the file architectures outlined above, some special considerations
apply to situations where part of the business of a solution will take place offline.
Most commonly, this will occur when laptops or iOS devices (iPad, iPhone, etc.)
are taken out on location. In many such cases, this calls for the creation of
satellite files that are designed to carry the data or a subset of it and to operate
independently of the live or server data.

In some cases, a satellite file will be nothing more than a complete copy of the
solution that will function in much the same way on the offline device as it does
when accessed from the server. Often, however, this won’t be ideal. You may
provide a different feature set, and, particularly in the case of iOS devices, a
differently designed and configured interface that is tailored to the specific
needs of the user in the field.

Where offline uses of your solution will involve entry or editing of data, you will
need to provide additional functionality to enable the satellite file to synchronize
the copy of data (or a sub-set of data) it holds with the data hosted in the master
copy of the solution running on the server. Detailed discussion of the uses of
satellite files and data synchronization is beyond the scope of this paper; for
additional detail, you should consult the FileMaker Go Sync Guide.

Utility Files
A further consideration to keep in mind when devising an appropriate file
architecture for your solutions is the range of uses of control files and other
utility files to perform ancillary operations and provide specific or specialized
functionality.

One use of control files is as an intermediary file to perform synchronization of
data between satellite files and the main solution database. An advantage of
using an intermediary file in this context is that the satellite file can be created
with no dependencies on the main solution file so it can operate offline without
delays or errors as it tries unsuccessfully to resolve references to an unavailable
host. Instead, the intermediary file can contain references to both the host and
the satellite and can therefore be configured to open only on demand and to
compare and reconcile data between the satellite and main systems.

As with the example outlined above, control files can be used in any situation
that calls for files to be closed selectively. A feature of FileMaker is that it will not
allow a file to be closed while other files, which have dependencies to it, remain
open. For purposes such as performing an update or changing solution
configuration, a separate utility file (one that contains no references to the other

 FileMaker Solution Architectures Page 25 of 39

files in play) can be used to close files on a user’s workstation, make updates or
other changes as required, then reopen the files as needed.

Among the many other uses of utility files are:

• data transformation tables that reformat data for reporting or for transfer
to or from legacy systems

• special purpose files that display dialogs, progress bars or other system
content for use throughout a solution

• “sandbox” files that may contain references to the main solution files, but
have more relaxed scripting and layout modification constraints so they
will provide advanced users with the ability to build their own layouts and
reports, including quick charts, without cluttering or disturbing the critical
functions of the main solution files.

A further use of a form of utility file is commonly called a robot – which is in
effect a separate FileMaker sub-system configured to run continuously
performing a range of designated tasks to automate specific system operations.
While some automation requirements can be met via the use of server-side
scripts or on-timer scripts that run on users’ workstations, there are some cases
where one or more separate robot files performing designated tasks may be
advantageous.

Among other things, a robot machine will run a full copy of FileMaker Pro and is
therefore able to execute scripts that are not constrained to the commands
available to FileMaker Server. A separate module designed to run as a robot can
be debugged using FileMaker's standard script debugger, which cannot be
used to debug server-side scripts (which necessarily runs “headless” so must
be debugged using the event and error logs). Moreover one or more robot
machines can perform heavy lifting operations. Multiple robots can be brought
online as needed for load management or as fallback in case of failure. In
addition, failure or error of a complex procedure on a robot workstation will not
impact the ongoing operation or available CPU resources of the server or a
user’s workstation.

The use-cases outlined above – along with numerous other purposes – can be
met by the use of files that are not part of the main body of the solution, yet,
which form a part of the solution with respect to the delivery of the required
functionality. FileMaker provides you with a rich source of options to meet
solution requirements, but it is up to you to consider and choose the most
appropriate configuration of elements – including the most effective file
architecture – for each case.

 FileMaker Solution Architectures Page 26 of 39

The Relationships Graph
The FileMaker Pro Relationships Graph is a tool that interacts with the relational
model, the logical model, and the file architecture of your solution.

The knowledge and skills that will be of benefit when embarking on the design
and implementation of a Relationships Graph for your solution are not the same
as those that equip you to arrive at a workable data model, an apt logical
design, or a suitable file architecture.

It is for this reason that the term Graph Modeling appears here. It underscores
that the options you choose with respect to the use of the Relationships Graph
are an essential part of solution design. These choices are as important as data
modeling and determinations about file architecture.

As you’ve learned in previous sections, database applications use tables to
represent entities in the data model. FileMaker Pro is no different in this respect,
but each table may be added to the Relationships Graph multiple times, so that
it can be used in different ways within the FileMaker solution.

To differentiate between the actual table definition, and the instances used on
the Relationships Graph, the table definition is referred to as the source table,
and each instance of the table added to the Graph is a table occurrence (TO).

Each TO gives you separate access to the table’s source data, which you can
use in multiple contexts within the solution.

Figure 8 below shows two table occurrences, Main and Auxiliary, joined in a
one-to-one relationship. Hovering the pointer over the TO icon in the upper-left
corner of each TO reveals that both TOs share the same source table. This type
of construction on the Relationships Graph is typically referred to as a self join.

 FileMaker Solution Architectures Page 27 of 39

Figure 8: One Source Table & Two Table Occurrences

The opportunity to build alternate perspectives into the graph by adding multiple
TOs that point to the same source table, but connecting them in different ways,
makes the graph inherently multi-dimensional. In this respect, the Relationships
Graph invites you to plot a path (knowingly or otherwise) that has conceptual
and abstract dimensions as well as tangible and concrete forms.

Consequently, even if you are interested only in practical methods and
techniques, you may nevertheless find some unexpected things to think about
along with a variety of pragmatic and useable alternative approaches to graph
modeling in the pages that follow.

Approaches to Graph Modeling
The FileMaker Pro Relationship Graph is a thing unto itself, with no close
parallels in other database applications. To work effectively with it, you may find
yourself challenged to think differently and to respond with creativity.
Fortunately, many FileMaker developers have no problem with that – it is among
the attractions FileMaker Pro has in store.

Over time, FileMaker developers have developed six common approaches to
Graph Modeling that cover various perspectives and techniques for working
with the Relationships Graph.

• Model 1 - The Amorphous / Chaotic Model
• Model 2 - The Squid / Anchor-Buoy Model
• Model 3 - The Modular / Centric Model
• Model 4 - The Flotilla or Satellite Model
• Model 5 - The Procedural Control Model
• Model 6 - The Hybrid Model

Model 1 – The Amorphous / Chaotic Model
The Amorphous / Chaotic Graph model has been the starting point for many of
us as first-time FileMaker Pro developers. It is, in a sense, “the model you have
when you don’t yet have a model.”

Since this model comprises various approaches to the use of the Graph where
most elements connect to everything else, these graphs tend to have lines going
all over the place and can be quite difficult to follow. A fairly typical example can
be seen in the Graph model in Figure 9.

 FileMaker Solution Architectures Page 28 of 39

Figure 9: The Graph design of an actual real-world solution comprising 27
tables, where there is no coherent organizing method and the
manageability of the graph is compromised.

While many developers start out with the Amorphous / Chaotic Graph model,
few developers persist with this approach for subsequent complex solutions.

For small and/or simple solutions, there may be no need to consider other
options. However, as complexity increases, developers have sought alternative
strategies with which to tame the growing complexity of the amorphous beast.

Model 2 – The Squid / Anchor-Buoy Model
The basic concept of Squid/Anchor-Buoy and all its variants is that the TOs that
layouts are based on (the Anchor or Squid-head) always provide the context for
layouts, so the developer is always "looking" in a single direction along the
relationships that connect associated TOs.

By imposing an artificial requirement that all relationships are used in one
direction only and only one Graph occurrence of each base table is used for
layout context, a somewhat simplified set of rules emerges enabling consistency
and order. An example of part of the graph of a solution where this approach
has been used is shown in Figure 10.

 FileMaker Solution Architectures Page 29 of 39

Figure 10: A Portion of the Relationships Graph of a solution in which a
variant of the Squid / Anchor-Buoy Graph Modeling technique has been
used.

The predictability and simplicity that the Squid/Anchor-Buoy model offers
through implementation of several universally applied rules and constraints
provides some consistency that may benefit team development or any other
situation where one developer seeks to understand the work of another.

For instance, the naming convention makes table grouping apparent even when
working with layout and script menus that select relationships outside of the
Relationships Graph. With proper naming of the TOs, the Table Occurrence
Group (TOG) can even be made to sort in the correct hierarchy within selection
menus. These and other benefits are by no means limited to this particular
model, but it has been a factor in its adoption and retention by some
developers.

Alongside potential benefits associated with the use of the Squid/Anchor-Buoy
model, there are some notable costs and constraints arising from the imposed
order of the system. One of the costs, as noted earlier is forfeiture of the
flexibility of two-way relationships and object reusability. A less obvious but
equally profound cost, however, is the redundancy that use of the
Squid/Anchor-Buoy model introduces to the Graph. Essential relationship
structures must occur separately in each TOG where they are required to be
available. In some solutions, this can result in the core of the data model being
repeated – in part or in full – in many if not all TOGs.

 FileMaker Solution Architectures Page 30 of 39

Consequently, in large and complex solutions, Squid/Anchor-Buoy model
typically results in portions of the graph being repeated many times to support
the limitations of this model. This imposes a performance penalty through the
number of redundant dependencies it introduces to the solution, and the join-
caching burden they carry. It also requires the developer to maintain many
redundant instances of similar structural elements. Moreover, the method
depends on adherence to a naming convention to ensure that multiple instances
of essentially the same structures can be reliably differentiated.

While some developers have adopted the Squid/Anchor-Buoy model and have
found it adequate and/or effective for their purposes, others have found
themselves in situations where the costs outweighed the benefits or have found
themselves less comfortable with the constraints and regimen imposed by this
method. Meanwhile, as the essentials of this method were taking shape,
developers explored other approaches and methods, leaving no shortage of
other options and other approaches available for consideration. Foremost
among the alternative models that developers have arrived at in their search for
alternative Relationships Graph organizing principles is the method described at
Model 3.

Model 3 – The Modular / Centric Model
Arising alongside other models, and more or less coming into view
simultaneously, is an alternative model that readily suggests itself during early
efforts to get to grips with Graph management. In a sense, the third model can
be seen as a melding of the elements of the first two, yet it is distinct from
either. In this model, natural functional components of a system give rise to
modular centers of Graph elements. This is a logical step that proves to be an
evolution of the graph management model that is not too difficult to implement,
yet provides some of the advantages (and perhaps fewer of the disadvantages)
of either of the preceding models.

As the third model takes shape, it becomes possible to envision it as comprised
of small core ERD-like structures that are set in place separately (disconnected)
for each main area of functionality of the solution. Radiating out from each of
these functional centers, branches of supporting TOs are arranged, providing for
the relatively discrete operations of a functional module of the solution. An
example of a Modular/Centric graph structure is shown in Figure 11.

 FileMaker Solution Architectures Page 31 of 39

Figure 11: Part of the Relationship Graph of a solution of moderate
complexity (35 tables in total) in which a modular / Centric graph Modeling
technique is applied.

Since many solutions have several areas of overlapping functionality, a
Modular/Centric graph model allows a degree of natural separation of graph
elements. Each modular center will require a few supporting TOs that point to
base tables that have their "home" in another module, but overall the extent of
redundancy will be moderate (typically considerably less than for Model 2). Most
layouts will be associated with one of the core TOs in the module TOGs;
however numerous relationships (particularly those between the core TOs for a
module) will be used in both directions.

The modular approach introduces flexibility for the developer that is not
available in the second model – and the resulting graph structures preserve the
manageability of smaller solutions such as the one depicted in Figure 11, while
supporting functionality that is considerably more complex than the solutions
depicted in either Figure 9 or Figure 10. Moreover, the Modular/Centric
approach reduces the ratio of table occurrences to tables. This relieves the
solution of some of the caching burden, and at the same time moderates the
need for using a strict naming convention. The modest number of table

 FileMaker Solution Architectures Page 32 of 39

occurrences can be managed adequately with natural or descriptive names, if
preferred, in all but the largest of solutions.

An additional feature of the Modular/Centric graph modeling approach is that it
lends itself well to modularization of other aspects of the solution. For example,
should you choose to place billing functionality in a separate file, the TOG
associated with billing functions could be located in the other file without
affecting the operations of the remainder of the solution. This is the case
regardless of where in the file architecture the data tables for the billing function
are located.

The Modular/Centric approach provides an elegant and efficient framework for
many solutions. Its benefits are immediate and enduring. However, its
appropriateness depends on being able to identify a natural separation
(modularization) of functionality within a given solution. Thus, Model 3 is highly
successful in many cases, but may prove cramped and forced in others –
particularly where there is a close interaction between all the essentials of a
solution. In such cases, a different approach may be called for.

Model 4 – The Flotilla or Satellite Model
The further evolution of graph modeling requires rethinking, while preserving and
building on the strengths of previous models. One of the strengths of the third
model is that it permits relatively straightforward rendering of the data structures
for separate parts (modules) of functionality within your solution. In this respect,
the third model improves on all variants of the first and second models,
especially with respect to complex solutions. Thus, the data model of the
solution although fragmented, is not altogether obscured.

In considering a move away from the techniques discussed to date, a natural
way forward is to look for ways to further press the advantages gained from the
improved clarity of the data model. This leads in the direction of exploring ERD-
like structures and leads to a logical next step – a fourth naturally occurring
graph model.

In this fourth model, a single group of TOs forms the center of the Graph and
serves as the primary data model for the solution. This TOG remains largely true
to the form of the ERD. However when a requirement arises that cannot be
accommodated in the central TOG (within the constraints FileMaker Pro
imposes on the Relationships Graph – e.g. no circular references), a separate
isolated group of two or three TOs is created outside the main TOG. This gives
rise to a large central TOG and a series of smaller "satellite" or "flotilla" TOGs,
arranged separately, as exemplified by the graph shown in Figure 12. In this
model, the graph is comprised of a main central (ERD-like) data model and a
group of (potentially) dozens of small special-purpose (typically single-purpose)
TOGs.

 FileMaker Solution Architectures Page 33 of 39

Figure 12: The graph structure of a 23-table solution developed using the
principles of the Flotilla/Satellite model.

The Flotilla/Satellite method represents a significant re-thinking of the way the
Relationships Graph supports the functionality of the solution, requiring a more
heavily script-driven process model. To support the required functionality via the
use of small special-purpose TOs, a number of utility layouts are required and
scripts or script triggers invoke these layouts as needed.

The Flotilla model provides a streamlined, simplified graph that provides an
integrated data model. It offers clarity and purposeful order to the graph. There
is moderate redundancy (e.g. tables that are represented in the main TOG must
also appear as TOs in one or more satellite TOGs to support specific activities
such as filtering, value lists, scripted GTRRs, etc.). Typically, the ratio of TOs to
tables is lower than the Squid/Anchor-Buoy model and may be lower than the
Modular/Centric model, depending on the specific requirements of the solution.

The Flotilla model can be adapted to serve many purposes, even in some cases
supporting the requirements of complex solutions. However, it imposes
increased dependence on scripted control of the solution, wherein the context
must "hop" from the main layouts to one or more utility layouts for various
procedures.

Having reached this point in your work with the FileMaker Pro Relationships
Graph, you will have acquired a solid understanding of a number of options and
possibilities the Graph offers and have a collection of alternative approaches to

 FileMaker Solution Architectures Page 34 of 39

choose from depending on the needs of a given solution. It may be that with one
of the four models discussed so far, the requirements of a majority of solutions
could be delivered with reasonable ease. However, the Relationships Graph has
more secrets to reveal to those who are willing to be a little adventurous.

Model 5 – The Procedural Control Model
In some respects, the preceding model bends the functionality of FileMaker Pro
to the will of the developer to make a less-than-obvious model workable. It
requires that the developer adopt a tightly scripted and controlled application
model where the Graph is supported by other elements to deliver needed
functionality and provide process support. This begs the question as to whether
there are other innovative application models that permit different approaches to
the use of the Graph – and indeed there are.

The fifth model of Graph management is in some respects the most difficult to
define, as it includes a variety of radically different methods that each have one
thing in common – their reliance on process control (i.e. contrivances in the logic
layer of the solution) to deliver the required data and support the interface.
Using process controls in place of some or all relationships, the methods
grouped together to form this model extend the capabilities of the application in
novel ways.

Examples of procedural control implementations include an implementation
described and demonstrated by Michael Harris of Cerné Systems Inc, and
Jonathan Stark's "Ginko" User Defined Data Model demonstrated as proof-of-
concept at DevCon 2005:

http://www.jonathanstark.com/downloads/Ginko.fp7.zip

The first of these implementations (as first described by Michael Harris) has two
calculated fields (one stored and one unstored) and a global field in each table.
The unstored calculation field evaluates the content of the global using GetField(
) to retrieve the value of any of the other fields in the table. The stored
calculation field concatenates all the key field values in the table into a return
delimited list. A relationship is created from the unstored field in one table to the
stored field in the next and so on, so that all the tables are joined in this way
through a cascading array. An example of a graph structure using this approach
to support a solution comprising 23 tables is shown in Figure 13.

 FileMaker Solution Architectures Page 35 of 39

Figure 13: The simplified array structure used to enable a Procedural
Control implementation adapted from the method described by Michael
Harris.

Using the calculated key fields and a cascading array of TOs as shown in Figure
13, any relationship can be created programmatically between any two tables by
setting the required key designations into the global fields in each of the tables.
Thus, relational matches can be created and destroyed in real time via a script
that resets the global assignments. This permits relational configurations to be
stored as data (an array of key values) and invoked at will by passing the array
to a key configuration script. Navigation scripts taking the user to each layout of
the solution are therefore also configured to establish the required relationship
contexts to support the requirements of the destination layout.

Since the examples mentioned above were first widely seen and discussed,
numerous other approaches to the use of procedural control as the basis of
solution design have emerged. Most notable, the addition of native script
triggers to FileMaker Pro 10 extended the scope for solutions to work adaptively
through creative use of the script engine. A number of advanced custom
function techniques have been published which support virtual list operations,
allowing data sets and subsets to be built on-the-fly without requiring
supporting relationships. Moreover the inclusion of the ExecuteSQL()
calculation function in FileMaker 12 further extends the potential to reduce
dependence on the Relationships Graph to support the logic and interface of the
solution. This enables filtering and delivering data to be written in script and
calculation code rather than in relationships on the graph.

In implementations of Procedural Control application architecture, the structure
and data design of the solution are defined in real time and as needed during
the solution processes (typically via script) and the graph becomes a simplified
and secondary supporting tool, configured to enable data model interventions
which occur elsewhere in the solution. Whereas the Flotilla model required an

 FileMaker Solution Architectures Page 36 of 39

increased reliance on scripted controls to manage context and support its graph
modeling principle, the procedural control model may rely largely or entirely on
run-time scripted processes to determine structure and context at every instant.

A defining attribute of the Procedural Control model is that solutions that
depend on it introduce an additional layer of abstraction. On fully
comprehending and implementing such models, it becomes clear that the graph
can be regarded as an enabling tool – it need not define the solution nor dictate
the parameters within which the developer or the solution will work. At this point
the data model and the functional model of the solution exist outside the graph:
perhaps on a whiteboard, in a spreadsheet, or in the developer's head.

It is beyond the scope of this paper to fully explore or critique the many
implementations of procedural control-based solutions that have emerged over
the course of the past decade. However it is sufficient for the purpose at hand
merely to acknowledge that such solutions exist and provide a relatively open-
ended alternative approach to solution design – and to Graph Modeling.

While the approaches grouped together within this model in all their various
permutations are revealing, liberating and intriguing, they do impose some
stringencies and limitations on the developer. Some implementations involve
uses of the FileMaker Pro platform that are somewhat at odds with the
mainstream and therefore not widely understood. Moreover, the structures
supported in any one implementation of a procedural control based solution are
better suited to some solution requirements than others are – and not all of them
scale well. Consequently, while this model in all its permutations represents a
breakthrough in thinking, the number of solutions relying primarily or exclusively
on procedural control implementations remains small.

Model 6 – The Hybrid Model
The preceding five models provide alternative approaches to the use of the tools
made available on the FileMaker platform. Each of the five models represents a
different method or paradigm for solution implementation. Each has its own
strengths and weaknesses, and each requires that the developer acquire
experience and understanding in order to employ the approach effectively.

In considering the merits and drawbacks of each of the models, it becomes
clear that each model operates within its own "rule set" and with those rules
come particular constraints. However, by relaxing the adherence to the rules of
any given model, it becomes possible to combine elements of several models
within the graph of one solution. In this way, some of the shortcomings of earlier
models such as the Modular/Centric and Flotilla models might be addressed by
incorporating elements borrowed from the procedural control model – or by
combining elements of other models.

 FileMaker Solution Architectures Page 37 of 39

Figure 14: An adaptation of the solution Graph of the Flotilla design from
Figure 13, adapted to reduce redundancy by including Procedural Control-
like grouping in place of a majority of the original satellite TOGs.

For example, in a particular implementation of the Flotilla model, one might
arrive at a graph implementation that comprises a main structural group of table
occurrences, plus fifty-five small purpose-specific groups, each with at least one
associated utility layout. Some analysis might show that five of the purpose-
specific TO groups have ongoing roles, but the remaining fifty can be replaced
with a single implementation of a procedural control grouping. Doing so
significantly reduces the complexity and redundancies of the Graph and the
number of utility layouts required, while only marginally impacting the scripting
model since the Flotilla model already has a significant reliance on scripted
support for processes. This particular hybrid results in a graph design such as
the one depicted at Figure 14. However it should be noted that by its nature,
hybrid graph modeling can result in a wide variety of combinations and the
resulting graphs may be equally varied.

With the adoption of a hybrid approach to solution design, the Graph is no
longer serving as the defining principle for the solution or the data model.
Rather, the developer is drawing on a variety of organizing principles according
to the needs of (and best outcomes for) the solution as a whole. Graph
methodologies are dictated by the requirements of the solution design rather
than the other way around. Although the Hybrid model revisits a selection of

 FileMaker Solution Architectures Page 38 of 39

principles articulated in earlier models, it does so within a different framework
where the orthodoxies of those models no longer determine limits, structures or
working processes.

Upon embarking on implementations of Hybrid modeled graphs, you may begin
to note that though your graphs contain defined structural elements and
segments of order that are recognizable as conforming to the patterns of one or
more of the various clearly delineated models described previously, no
comprehensive organizing principle pervades the entire solution. The graph is
highly organized, but the organization arises on a needs basis rather than
conforming to a unified set of principles.

Beyond Ancient Wisdom
It goes without saying that each of us acquires new insights and develops new
skills with every challenge we overcome. The rapid evolution of the FileMaker
product line continues to provide both challenges and opportunities. With that,
however, new solutions to old problems have become available, and new
features such as native script triggers and SQL calculation capabilities provide
enhanced tools for managing logic and process in solutions of all kinds.

The first thing to consider when revisiting the options of each model is the way
in which each is impacted by recently introduced FileMaker capabilities.
Perhaps the most significant impacts have been an increased prevalence of
features and techniques that support procedural control and hybrid design
approaches, where a proportion of the logic and interface requirements of the
solution are delivered via mechanisms that don’t depend (or don’t depend
primarily) on the Relationships Graph.

While the fundamentals of the available approaches remain, it’s important to
recognize that the details continue to evolve, and as the feature set increases,
greater use can be made of the flexibility that the FileMaker platform provides.
Rather than being constrained to a single view of the Graph, or to a graph-
centered view of solution design, the range of alternatives has increased, and
hybrid models have increased attractiveness and viability.

In Conclusion
While there is no necessity to adopt or apply all of the methods outlined in this
technical brief, you are encouraged to be aware of them, and to embrace those
that are a good fit for your requirements. Applying a broadly based set of
perceptions and skills will afford you the flexibility to deal with situations as they
arise and to choose techniques to fit the special needs of each case and each
solution.

 FileMaker Solution Architectures Page 39 of 39

About The Author
Ray Cologon, PhD., is the director of NightWing Enterprises, based in
Melbourne, Australia, a provider of FileMaker design, consulting and
development services to clients worldwide. Ray has been working with
FileMaker, both in-house and as an independent contractor, for more than two
decades, and is the author of the FileMaker Pro 10 Bible and the FileMaker Pro
9 Bible, as well as several FileMaker, Inc. published white papers and technical
briefs. Ray is an award-winning trainer and speaker in Australia and was
recipient of the FileMaker, Inc. 2005 FileMaker award for Leadership and
Technical Excellence in FileMaker Pro. Ray is also a FileMaker Certified
Developer for all versions since FileMaker 7. Contact him at
cologon@nightwingenterprises.com.

© 2013 FileMaker, Inc. All rights reserved. FileMaker is a trademark of
FileMaker, Inc., registered in the U.S. and other countries. The file folder logo is a trademark of FileMaker,
Inc. All other trademarks are the property of their respective owners. Product specifications and availability
are subject to change without notice. The example companies, organization, products, domain names, e-
mail addresses, logos, people, places and events depicted are purely fictitious, and any resemblance to
existing persons and companies is purely coincidental. Product specifications and availability subject to
change without notice.

THIS DOCUMENT IS PROVIDED "AS IS" WITHOUT WARRANTY OF ANY KIND, AND FILEMAKER
DISCLAIMS ALL WARRANTIES, EITHER EXPRESS OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE
IMPLIED WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE, OR THE
WARRANTY OF NON-INFRINGEMENT. IN NO EVENT SHALL FILEMAKER OR ITS SUPPLIERS BE LIABLE
FOR ANY DAMAGES WHATSOEVER INCLUDING DIRECT, INDIRECT, INCIDENTAL, CONSEQUENTIAL,
LOSS OF BUSINESS PROFITS, PUNITIVE OR SPECIAL DAMAGES, EVEN IF FILEMAKER OR ITS
SUPPLIERS HAVE BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES. SOME STATES DO NOT
ALLOW THE EXCLUSION OR LIMITATION OF LIABILITY. FILEMAKER MAY MAKE CHANGES TO THIS
DOCUMENT AT ANY TIME WITHOUT NOTICE. THIS DOCUMENT MAY BE OUT OF DATE AND
FILEMAKER MAKES NO COMMITMENT TO UPDATE THIS INFORMATION.

