

FileMaker Pro™

AutoIndexing
Paper prepared by R J Cologon PhD

November 2002

Background
In FileMaker Pro, calculations which include references to global fields or related fields (ie
fields from other databases) cannot be stored or indexed.

Indexes, however, perform several important functions:

1. they facilitate searching on a field

2. they enable the creation of value lists based on field contents

3. indexed fields can be used as the target (foreign) key in a relationship

In addition, though indexes are not used for sorting, stored values are nevertheless
sorted more efficiently than unstored ones (since the calc does not have to be evaluated
as the sort progresses).

Each of these considerations is significant. However the latter two sometimes present the
database designer with a dilemma. Occasionally, the natural connections between data
elements require that a relational dependency - or a global value - be factored into the
production of a key field or value list.

This paper is concerned with techniques that may be used to ameliorate a situation
where a relationship or value list cannot be created because the field on which it is to be
based cannot be indexed.

The Scripted Solution
One answer to this problem lies in the use of a script rather than a calculation.

Whereas a calculation determines a result based on a formula, a script is able to place a
calculated result - using an equivalent formula - into a text or number field. A result so
placed may be indexed as data, regardless of whether its components are local, global or
related.

While a scripted procedure to write a calculated value to a data field throughout the
current file can be set up using the 'Replace Contents' (formerly 'Replace') script step,
this will not be suitable for use in a multi-user solution, it will skip over any records
currently being edited by another user in multi-user mode, without producing an error
code or any means to trace the records which have not been updated.

A better alternative, therefore is a loop which passes through the file applying the
calculation to each record in turn, via a Set Field [] command. Immediately after each
Set Field step, error-trapping can be used to ensure that the record was not locked, and
an alternate procedure can be invoked if it was (eg the record number can be stored, so

http://www.nightwing.com.au/FileMaker/ CobaltSky@nightwing.com.au

Auto-Indexing Page 2 of 3

that a subsequent pass can be made, and/or the problem can be reported to the user at
the closure of the script sequence).

Since either approach (Replace Contents or Loop/Set Field) works on the current found
set, it will be necessary to either:

• precede the relevant step/s with a 'Show All Records' step to that all records are
included, or

• if it is desired to complete the procedure without disturbing the found set, to
perform the procedure twice, with a ‘Show Omitted’ step between the two
passes, and a further ‘Show Omitted’ step at the end of the script.

In this latter case, a test to ascertain whether there is a found set in place should
precede the second sequence, along the lines of:

If [“Status(CurrentFoundCount) < Status(CurrentRecordCount)”]
 Show Omitted
 Replace Contents [“Your Field’, Replace with calculated result: “Your Formula Here”]
 Show Omitted
EndIf

(note that this is the single-user-only Replace Contents version of the script).

Using this approach, however, it will be necessary to run the script whenever it is
desirable to refresh the indexed field values. This is a limitation, since it will not always
be convenient or efficient for users to run the script, so the solution is not suitable for all
situations.

In a few cases, it may be possible to solve this problem procedurally (eg to call the script
whenever a user enters a layout where a relationship or value list based on the field is to
be accessed). In other situations, the solution will be less than seamless.

Automation
A better approach in some instances may be to set the indexable field to update
automatically whenever a relevant event occurs. This would be done by setting the
indexable field as a look-up (to copy the contents of a calculating field via a self-join
based on recordID).

The trigger for the lookup should be based on a stored value local to the current record
which, when it changes, will cause a refreshing of the lookup of the calculated value. This
can be something specific to the nature and purpose of the calculation (eg a local value
associated with it) or something as general as the record modification time. Once a
suitable event to trigger by has been selected, a primary key field for the trigger should
be created. This can be called 'cTrigger.key', and should be defined with a formula along
the lines of:

Case(IsEmpty(TriggerField), Status(CurrentRecordID), Status(CurrentRecordID))

In addition to this, the following will be required:

1. a stored calculating field (call it 'RecordID') of number type with the formula set to

Status(CurrentRecordID)

2. a self-join relationship called 'StoredCalcUpdate' which matches cTrigger.key with
RecordID.

3. a data field (ie of type text, number, date or time, as appropriate) which will be the
indexable field upon which a relationship of value list is to be based

Auto-Indexing Page 3 of 3

The data field referred to at 3 (above) should be defined as a lookup to copy the value of
the pre-existing unstored calculation field, based on the 'StoredCalcUpdate' relationship.

With these procedures in place, the stored data field will be refreshed automatically each
time the value you have chosen as the basis of your trigger changes (eg if it is a field
which auto enters modification time, every time anything on the record changes).

Choice of Trigger/s for the Update
It is important to recognise that this automation technique has a limitation insofar as it
will only successfully trigger in response to changes which are local to the current record.
This is because the table of field dependencies which FileMaker maintains in the
background to ensure that dependent calculation fields are updated, is local to each file.

So, for example, if the trigger field references a global value, only the current record will
update when that value is changed. If the trigger field references a value in another file
(via a relationship), the triggering may be limited to changes made to the local value
from a field placed on a layout in the current record.

For this reason it is preferable that a value be chosen as the trigger for the update, which
is either:
∑ closely associated with the calculation function and therefore likely to change

whenever there is a corresponding need to update the calculation value, or
∑ general to the record and likely to force frequent updates to ensure that the

calculation is refreshed with maximum frequency.

For this latter purpose, a generic record-related value such as a record modification time
field may be the best choice as the point of reference for the trigger.

A Combined Approach
The table of field dependencies that FileMaker maintains in the background and uses to
track cascading recalculations is confined to stored calculations. Therefore it is important
to note that although the approach can work very well in some instances, it is
theoretically imperfect in that a value in another file can change remotely and this will
not necessarily trigger the relookup.

In implementations where this limitation is of concern, a combined approach which
includes a refresh script (eg based on a Replace Contents script step) as an adjunct to
the triggering technique is a possible solution. This can either be triggered periodically by
users or run routinely at start-up. shut down or linked to some other action such as
change of layouts.

In cases where data on the current records is changing frequently, the added measure is
unlikely to be necessary. However some combination of the two techniques outlined
above is likely to provide an adequate solution for indexing problems in most situations.

Prepared by: © 2002 NightWing Enterprises
R J Cologon, PhD
NightWing Enterprises
Melbourne, Australia

* FileMaker Pro is a Trademark of FileMaker Inc.

CobaltSky@nightwing.com.au
http://www.nightwing.com.au/FileMaker/

